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Introduction

@ R an integral domain
@ M, N finitely generated torsionfree R-modules

Question

When is the tensor product M ®r N torsionfree?
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Introduction

Conjecture 1.1 (Huneke—Wiegand conjecture [4])

Let R be a Gorenstein local domain. Let M be a maximal C—-M
R-module. If M ®g Homg(M, R) is torsionfree, then M is free.
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Introduction

Conjecture 1.1 (Huneke—Wiegand conjecture [4])

Let R be a Gorenstein local domain. Let M be a maximal C—-M
R-module. If M ®g Homg(M, R) is torsionfree, then M is free.

Conjecture 1.2

Let R be a Gorenstein local domain with dim R = 1 and / an ideal of
R. If | ®g Homg(/, R) is torsionfree, then [ is principal.
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Introduction

In my lecture we are interested in the question of what happens if we
replace Homg(/, R) by Homg(/, Kg).
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Introduction

In my lecture we are interested in the question of what happens if we
replace Homg(/, R) by Homg(/, Kg).

Conjecture 1.3

Let R be a C—M local ring with dim R = 1 and assume 3 Kg. Let /
be a faithful ideal of R. If | ®g Homg(/, Kg) is torsionfree, then
I =2 R or Kg as an R-module.
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Introduction Change o gs Proof of Thm 1.4 Numerical semigroup rings The case where e(R) =7 Examples References

Theorem 1.4 (Main Theorem)

Let R be a C—M local ring with dim R = 1 and assume 3 Kg. Let /
be a faithful ideal of R.

(1) Assume that the canonical map
t: /®R HomR(I, KR) — KR, xX® f f(X)
is an isomorphism. If r;s > 2, then e(R) > (r + 1)s > 6,
where r = ug(l) and s = ugr(Homg(/, Kg)).

(2) Suppose that | ®g Homg(/, Kg) is torsionfree. If ¢(R) < 6, then
I = R or Kg.
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Introduction Change of rings Proof of Thm 1.4 Numerical semigroup rings > e(R) =7 Examples

Theorem 1.4 (Main Theorem)

Let R be a C—M local ring with dim R = 1 and assume 3 Kg. Let /
be a faithful ideal of R.
(1) Assume that the canonical map
t: | ®g Homg(l,Kg) = Kg, x® f — f(x)
is an isomorphism. If r;s > 2, then e(R) > (r + 1)s > 6,
where r = ug(l) and s = ugr(Homg(/, Kg)).

(2) Suppose that | ®g Homg(/, Kg) is torsionfree. If ¢(R) < 6, then
I = R or Kg.

Corollary 1.5

Let R be a C—M local ring with dim R > 1. Assume that R, is
Gorenstein and e(R,) < 6 for every height one prime p. Let / be a
faithful ideal of R. If | ®g Homg(/, R) is reflexive, then [ is principal.
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Introduction

Notation

In what follows, unless other specified, we assume

Q@ (R,m) a C-M local ring, dm R =1

@ F = Q(R) the total ring of fractions of R.

@ F ={I|Iis a fractional ideal such that F/ = F}
@ d a canonical module Kg of R

@ MY = Homg(M, Kg) for each R-module M

Q ur(M) = lr(M/mM) for each R-module M
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Change of rings

Change of rings
Let / € F. Denote by

t:l@pl” — Kg, x® f > f(x).
Then the diagram

F®gr (I @r 1Y) —= F@rKg

dl T

| @p 1Y s Kg

is commutative. Hence

T :=T( ®r!l") = Kert.
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Lemma 2.1

| ®r IV is torsionfree <= t : | ®r IV — Kp is injective.
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Lemma 2.1

| ®r IV is torsionfree <= t : | ®r IV — Kp is injective.

We set L = Im(/ @g IV < Kg).
Consider

0T o l1@s1Y 5 L—0.
Hence

LY~ (I ®g 1Y) =Homg(I,I"V)=1:1=:BCF.
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Change of rings

Let RC S C B. Then [/ is also a fractional ideal of S.

L=L"Y=B"=KgCS'=Ks and

Homs(l, Ks) = Homs(l, HomR(S, KR))
Homg(/ ®s S, Kg) = Homg(/,Kg) = 1".

I
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Change of rings

| ®s Homs(/,Ks) — Ks
d 1
/®R [V

t
— L
where p(x @ f) =x® f.
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Change of rings

Lemma 2.2

let ¢ Fand RCSCB=1:1.1f ] ®g 1 is torsionfree, then
| ®s Homg(/, Ks) is a torsionfree S-module and

p:l®g IV — I XRs Homs(l, Ks)

is bijective.
In particular, if S = B, then

tg : | Rp HomB(I,KB) —Kg, x®f— f(X)

is an isomorphism of B-modules.
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Introduction Change of rings Proof of Thm 1.4 Numerical semigroup rings The case

Proposition 2.3 (Change of rings)

Let / € F and assume that | ®g IV is torsionfree. If there exists
R C S C B such that /| 2 S or Ks as an S-module, then | & R or
Kgr as an R-module.

Proof.

Suppose | = S and consider

I @r IV 2 [ @5 Homs(/, Ks) = Homs(/, Ks) = V.

Then ur(l)-pr(1Y) = pr(lY), so that | = R, since ug(/) = 1. O
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Proof of Theorem 1.4

Theorem 1.4 (Main Theorem)

Let R be a C—M local ring with dim R = 1 and assume 3 Kg. Let /
be a faithful ideal of R.
(1) Assume that | @& IV = Kg.
If r,s > 2, then e > (r+1)s > 6,
where e = e(R), r = ug(/), and s = ugr(1Y).
(2) Suppose that | ®g IV is torsionfree.
If e(R) <6, then | = R or K.
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Proof of assertion (1) of Theorem 1.4
Choose f € m such that fR is a reduction of m. Let

S=R/fR, n=m/fR and M=1[/fl.

Hence
,U/S(M) =r, I's(M) = 65((0) M I'l) = S.

We write M = Sx; + Sx, + - - - + Sx, and look at
(f0) 0—=X =S M0, oe)=x.

We get
(#1)) 0—= MY - KL = XV =0,

(f2) 0 — Homs(M, M) — M®" — Homs(X, M).
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Proof of Thm 1.4

Proof of assertion (1) of Theorem 1.4
Because S = Homg(M, M), we have by (t2)

(#3) 0— S -2 M® — Homs(X, M),

where (1) = (x1, X2, . . ., X;)-
By
(f0) 0—=X—= S 25 M 0.

we get

0s(X) = r-ts(S) — ts(M) = re — e = (r — 1)e.
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Proof of Thm 1.4

Proof of assertion (1) of Theorem 1.4
By
(f1) 00— MY = KZ" — XY =0,

we have

q = pus(X¥) > us(KS") — ps(MY) = r-ps(Ks) — rs(M).
Therefore
(r—1e=1/{s(X)>/¢s((0):xn)=q>r’s—s=s(r’—1).

Thus
e>s(r+1),

since r > 2.
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Introduction Change of rings Proof of Thm 1.4 Numerical semigroup rings The case where e(R) = 7 Examples Re

Proof of assertion (1) of Theorem 1.4.
Now suppose e = s(r + 1). Then n- Homg(X, M) = (0). By

(#33) 0— S -2 M® — Homs(X, M),
we have
n-M® C S-(x, %0, ..., X ).

Hence nM C a;M, where a; = (0) : (x; |1 <j<r, j#i)Cn.
Therefore

M =a;M for 1 <Vi<r,
so that n>M = (aja,)M = (0). Thus nM C (0) :py n. Consequently

S = 1‘5(/\/’) = 65((0) M tl) > Es(nl\/l) = 65(/\/’) — fS(M/ﬂM)
= e—r=s(r+1)—r.

Hence 0 > rs — r = r(s — 1), which is impossible. O

vy
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Proof of Thm 1.4

Corollary 3.1

Let R be a Gorenstein local ring with dimR =1 and e(R) < 6. Let /
be a faithful ideal of R. If | ®g Homg(/, R) is torsionfree, then [ is
principal.
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Proof of Thm 1.4

Theorem 3.2

Let (R, m) be a C-M local ring with dim R = 1 and assume that
mR C R. Let | be a faithful fractional ideal of R. If | ®g I is
torsionfree, then [ =2 R or Kg.

Theorem 3.3

Let R be a C—M local ring with dim R = 1. Assume dKg and
v(R) = e(R). Let I be a faithful ideal of R. If | ®& I = Kg, then
I 2 R or Kg.

Naoki Taniguchi (Meiji University) Huneke-Wiegand conjecture December 5, 2013 20 /33



Proof of Thm 1.4

Let k be a field.

Proposition 3.4

Let R = k[[t?, t>™, ..., t?*7!]] (a > 1) be the semigroup ring and let
I # (0) be an ideal of R. If | ®& I is torsionfree, then | = R or Kg.

Corollary 3.5

Let R = k[[t?, t>™, ..., t>*7?]] (a > 3) be the semigroup ring and let
I be an ideal of R. If | ®& Homg(/, R) is torsionfree, then / is
principal.
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Introduction Change of rings Proof of Thm 1.4 Numerical semigroup rings he case where e(R) = 7 Examples

Proof of Corollary 3.5.

Notice that R is a Gorenstein local ring with R : m = R + kt?271.
Suppose that / 2 R. Then R C B := [ : | and therefore t>*~! € B,

whence
RC S := k[t tt, ... t* Y] CB.

Thanks to Lemma 2.2, | ®s Homs(/, Ks) is S-torsionfree, so that
| =S or | = Kgs as an S-module by Proposition 3.4. Hence | = R by
Proposition 2.3, which is impossible. O]

4
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Proof of Thm 1.4

Remark 3.6

Corollary 3.5 gives a new class of one-dimensional Gorenstein local
domains for which Conjecture 1.2 holds true.

For example, take a = 5. Then R = k[[t5,t° ¢, t¥]] is not a
complete intersection.
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Numerical semigroup rings

Setting 4.1

Let 0 < a; < @ < -+ < a € Z such that ged(ag, ap, ..., ar) = 1.
We set H = (a1, ap,...,a)) = {>.r_, ca; | 0< ¢ € Z} and

R =k[[t™, t=,...,t*]] < V =KkK][[t]]
Let m = (t%,t®,..., t*) be the maximal ideal of R. We set

¢=R:V and c = ¢(H), the conductor of H, whence ¢ = t°V. Let
a = ¢ — 1. Notice that e(R) = a; = ug(V).

Definition 4.2

Let / € F. Then [ is said to be a monomial ideal, if / =)
for some A C Z.

Rt"

neN
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Numerical semigroup rings

Set
M ={l € F|Iis a monomial ideal}.

Passing to the monomial ideal t~9/ for some g € Z, we may assume

RCICV.

We assume that e = a; > 2. Set

aj=max{n € Z\H|n=i mode} (0<i<e—1)

and

S={a;|1<i<e—-1}.
Hence ag = —e, 1S = e — 1, a = maxS§, and «; > i for
1<i<e-—-1.
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Numerical semigroup rings

Theorem 4.3

Let b = minS and suppose t> € R : m. Let | € M such that
RCICV.Ifl®glY=Kg, then | = R or Kg.
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The case where e(R) = 7

The case where ¢(R) =7

Let | € M such that R C /| C V and set J = Kg : . Suppose that
pur(l) = nr(J) = 2 and write

I=(1,t%), J=(1,t%),

where ¢;, ¢; > 0. Assume IJ = Kg and ug(Kg) = 4.

Naoki Taniguchi (Meiji University) Huneke-Wiegand conjecture



The case where e(R) = 7
The case where ¢(R) =7

Let | € M such that R C /| C V and set J = Kg : . Suppose that
pur(l) = nr(J) = 2 and write

I=(1,t%), J=(1,t%),

where ¢;, ¢; > 0. Assume IJ = Kg and ug(Kg) = 4.
Theorem 5.1

e=a > 8.
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The case where e(R) = 7

Theorem 5.2
Let R = k[[t™, t*, - -

-, t?]] be a semigroup ring and suppose that
e=a <7.Let]/ € M. If ]| ®g IV is torsionfree, then | = R or K.
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The case where e(R) = 7

Theorem 5.2

Let R = k[[t™, t®,--- , t*]] be a semigroup ring and suppose that
e=a <7.Let]/ € M. If ]| ®g IV is torsionfree, then | = R or K.

v

Corollary 5.3

Let R be a Gorenstein numerical semigroup ring with e(R) < 7 and
let | € M. If | ®g Homg(/, R) is torsionfree, then / is principal.
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Examples

Condition: IJ = Kg and pugr(Kg) = 4

Example 6.1

Let R = k[[t8, t!, 1 £'%]]. Then Kg = (1, t, £3, t*). We take
I =(1,t) and set J=Kg:I. Then J = (1,13, IJ = Kg,
,U,R(KR) = 4, but

Tl ®rJ)=R(txt"® -1 t") = R/m.

Remark 6.2

In the ring R of Example 6.1 A monomial ideals / such that
I 2 R,] 2 Kg, and | @g IV is torsionfree.
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The following ideals also satisfy
1J = KR and ,UR(KR) =4

but | ®% IV is not torsionfree.

(1) H=(8,9,10,13) ,Kr = (1, ¢, 3, t*), I = (1, ¢t).
(2) H=(8,11,12,13) ,Kg = (1, t, 13, t*), ] = (1,1).
(3) H=(8,11,14,23) ,Kr = (1, £3,t°,t'2), 1 = (1, t3).
(4) H=(8,13,17,18) ,Kr = (1, t, >, %),/ = (1, t).
(5) H=(8,13,18,25) ,Kr = (1, t5,t7, t!2), 1 = (1, t°).
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If e(R) > 9, then Conjecture 1.3 is not true in general.

Example 6.3

Let R = k[[t°, t10, £, £12 ¢1%]]. Then Kg = (1,t, 3, t*). Let
I =(1,t) and put J = Kg : I. Then

J= (1,6, na(l) = pr(J) =2, and jr(Kg) = 4,

but / ®g IV is torsionfree.
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Examples

Thank you very much for your attention!
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