Huneke-Wiegand conjecture of rank one with the change of rings

Naoki Taniguchi

Meiji University
Joint work with S. Goto, R. Takahashi, and H. L. Truong
RIMS Workshop The 35th Symposium on Commutative Algebra

December 5, 2013

Introduction

(1) R an integral domain
(2) M, N finitely generated torsionfree R-modules

Question
When is the tensor product $M \otimes_{R} N$ torsionfree?

Conjecture 1.1 (Huneke-Wiegand conjecture [4])

Let R be a Gorenstein local domain. Let M be a maximal C-M R-module. If $M \otimes_{R} \operatorname{Hom}_{R}(M, R)$ is torsionfree, then M is free.

Conjecture 1.1 (Huneke-Wiegand conjecture [4])
 Let R be a Gorenstein local domain. Let M be a maximal C-M R-module. If $M \otimes_{R} \operatorname{Hom}_{R}(M, R)$ is torsionfree, then M is free.

Conjecture 1.2
Let R be a Gorenstein local domain with $\operatorname{dim} R=1$ and $/$ an ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}(I, R)$ is torsionfree, then $/$ is principal.

In my lecture we are interested in the question of what happens if we replace $\operatorname{Hom}_{R}(I, R)$ by $\operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)$.

In my lecture we are interested in the question of what happens if we replace $\operatorname{Hom}_{R}(I, R)$ by $\operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)$.

Conjecture 1.3

Let R be a C-M local ring with $\operatorname{dim} R=1$ and assume $\exists \mathrm{K}_{R}$. Let I be a faithful ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)$ is torsionfree, then $I \cong R$ or K_{R} as an R-module.

Theorem 1.4 (Main Theorem)

Let R be a $\mathrm{C}-\mathrm{M}$ local ring with $\operatorname{dim} R=1$ and assume $\exists \mathrm{K}_{R}$. Let I be a faithful ideal of R.
(1) Assume that the canonical map

$$
t: I \otimes_{R} \operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right) \rightarrow \mathrm{K}_{R}, x \otimes f \mapsto f(x)
$$

is an isomorphism. If $r, s \geq 2$, then $\mathrm{e}(R)>(r+1) s \geq 6$, where $r=\mu_{R}(I)$ and $s=\mu_{R}\left(\operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)\right)$.
(2) Suppose that $I \otimes_{R} \operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)$ is torsionfree. If $\mathrm{e}(R) \leq 6$, then $I \cong R$ or K_{R}.

Theorem 1.4 (Main Theorem)

Let R be a $\mathrm{C}-\mathrm{M}$ local ring with $\operatorname{dim} R=1$ and assume $\exists \mathrm{K}_{R}$. Let I be a faithful ideal of R.
(1) Assume that the canonical map

$$
t: I \otimes_{R} \operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right) \rightarrow \mathrm{K}_{R}, x \otimes f \mapsto f(x)
$$

is an isomorphism. If $r, s \geq 2$, then $\mathrm{e}(R)>(r+1) s \geq 6$, where $r=\mu_{R}(I)$ and $s=\mu_{R}\left(\operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)\right)$.
(2) Suppose that $I \otimes_{R} \operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)$ is torsionfree. If $\mathrm{e}(R) \leq 6$, then $I \cong R$ or K_{R}.

Corollary 1.5

Let R be a $C-\mathrm{M}$ local ring with $\operatorname{dim} R \geq 1$. Assume that R_{p} is Gorenstein and $\mathrm{e}\left(R_{\mathfrak{p}}\right) \leq 6$ for every height one prime \mathfrak{p}. Let $/$ be a faithful ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}(I, R)$ is reflexive, then I is principal.

Contents

(1) Introduction
(2) Change of rings
(3) Proof of Theorem 1.4
(4) Numerical semigroup rings and monomial ideals
(5) The case where $\mathrm{e}(R)=7$
(6) Examples

Notation

In what follows, unless other specified, we assume
(1) (R, \mathfrak{m}) a $\mathrm{C}-\mathrm{M}$ local ring, $\operatorname{dim} R=1$
(2) $F=\mathrm{Q}(R)$ the total ring of fractions of R.
(0) $\mathcal{F}=\{I \mid I$ is a fractional ideal such that $F I=F\}$
(1) \exists a canonical module K_{R} of R
(0) $M^{\vee}=\operatorname{Hom}_{R}\left(M, \mathrm{~K}_{R}\right)$ for each R-module M
(0) $\mu_{R}(M)=\ell_{R}(M / \mathfrak{m} M)$ for each R-module M

Change of rings

Let $I \in \mathcal{F}$. Denote by

$$
t: I \otimes_{R} I^{\vee} \rightarrow \mathrm{K}_{R}, x \otimes f \mapsto f(x) .
$$

Then the diagram

$$
\begin{array}{ccc}
F \otimes_{R}\left(I \otimes_{R} I^{\vee}\right) & \xrightarrow{\cong} F \otimes_{R} \mathrm{~K}_{R} \\
\alpha \uparrow & & \uparrow \\
I \otimes_{R} I^{\vee} & \xrightarrow{t} & \mathrm{~K}_{R}
\end{array}
$$

is commutative. Hence

$$
T:=\mathrm{T}\left(I \otimes_{R} I^{V}\right)=\operatorname{Ker} t .
$$

Lemma 2.1

$I \otimes_{R} I^{\vee}$ is torsionfree $\Longleftrightarrow t: I \otimes_{R} I^{\vee} \longrightarrow \mathrm{K}_{R}$ is injective.

Lemma 2.1

$I \otimes_{R} I^{\vee}$ is torsionfree $\Longleftrightarrow t: I \otimes_{R} I^{\vee} \longrightarrow \mathrm{K}_{R}$ is injective.

We set $L=\operatorname{Im}\left(I \otimes_{R} I^{V} \xrightarrow{t} \mathrm{~K}_{R}\right)$.
Consider

$$
0 \rightarrow T \rightarrow I \otimes_{R} I^{\vee} \xrightarrow{t} L \rightarrow 0 .
$$

Hence

$$
L^{\vee} \cong\left(I \otimes_{R} I^{\vee}\right)^{\vee}=\operatorname{Hom}_{R}\left(I, I^{\vee \vee}\right) \cong I: I=: B \subseteq F .
$$

Let $R \subseteq S \subseteq B$. Then I is also a fractional ideal of S.

$$
L=L^{\vee \vee}=B^{\vee}=\mathrm{K}_{B} \subseteq S^{\vee}=\mathrm{K}_{S} \quad \text { and }
$$

$\operatorname{Hom}_{s}\left(I, \mathrm{~K}_{S}\right)=\operatorname{Hom}_{S}\left(I, \operatorname{Hom}_{R}\left(S, \mathrm{~K}_{R}\right)\right)$

$$
\cong \operatorname{Hom}_{R}\left(I \otimes_{S} S, \mathrm{~K}_{R}\right)=\operatorname{Hom}_{R}\left(I, \mathrm{~K}_{R}\right)=I^{\vee} .
$$

$$
\begin{array}{ccc}
I \otimes_{S} & \operatorname{Hom}_{S}\left(I, \mathrm{~K}_{S}\right) & \xrightarrow{t_{S}} \\
I \otimes_{R} I^{\vee} & & \stackrel{t}{\longrightarrow} \\
\mathrm{~K}_{S} \\
& L
\end{array}
$$

where $\rho(x \otimes f)=x \otimes f$.

Lemma 2.2

Let $I \in \mathcal{F}$ and $R \subseteq S \subseteq B=I: I$. If $I \otimes_{R} I^{V}$ is torsionfree, then $I \otimes_{S} \operatorname{Hom}_{S}\left(I, \mathrm{~K}_{S}\right)$ is a torsionfree S-module and

$$
\rho: I \otimes_{R} I^{V} \rightarrow I \otimes_{S} \operatorname{Hom}_{S}\left(I, K_{S}\right)
$$

is bijective.
In particular, if $S=B$, then

$$
t_{B}: I \otimes_{B} \operatorname{Hom}_{B}\left(I, K_{B}\right) \rightarrow K_{B}, \quad x \otimes f \mapsto f(x)
$$

is an isomorphism of B-modules.

Proposition 2.3 (Change of rings)

Let $I \in \mathcal{F}$ and assume that $I \otimes_{R} I^{V}$ is torsionfree. If there exists $R \subseteq S \subseteq B$ such that $I \cong S$ or K_{S} as an S-module, then $I \cong R$ or K_{R} as an R-module.

Proof.

Suppose $I \cong S$ and consider

$$
I \otimes_{R} I^{\vee} \stackrel{\rho}{\cong} I \otimes_{s} \operatorname{Hom}_{s}\left(I, \mathrm{~K}_{s}\right) \cong \operatorname{Hom}_{s}\left(I, \mathrm{~K}_{s}\right) \cong I^{\vee} .
$$

Then $\mu_{R}(I) \cdot \mu_{R}\left(I^{\vee}\right)=\mu_{R}\left(I^{\vee}\right)$, so that $I \cong R$, since $\mu_{R}(I)=1$.

Proof of Theorem 1.4

Theorem 1.4 (Main Theorem)
Let R be a $C-M$ local ring with $\operatorname{dim} R=1$ and assume $\exists \mathrm{K}_{R}$. Let I be a faithful ideal of R.
(1) Assume that $I \otimes_{R} I^{V} \cong \mathrm{~K}_{R}$.

If $r, s \geq 2$, then $e>(r+1) s \geq 6$,
where $e=\mathrm{e}(R), r=\mu_{R}(I)$, and $s=\mu_{R}\left(I^{\vee}\right)$.
(2) Suppose that $I \otimes_{R} I^{V}$ is torsionfree. If $\mathrm{e}(R) \leq 6$, then $I \cong R$ or K_{R}.

Proof of assertion (1) of Theorem 1.4

Choose $f \in \mathfrak{m}$ such that $f R$ is a reduction of \mathfrak{m}. Let

$$
S=R / f R, \quad \mathfrak{n}=\mathfrak{m} / f R \quad \text { and } M=I / f l .
$$

Hence

$$
\mu_{S}(M)=r, \quad \mathrm{r}_{S}(M)=\ell_{S}((0): M \mathfrak{n})=s .
$$

We write $M=S x_{1}+S x_{2}+\cdots+S x_{r}$ and look at

$$
\left(\sharp_{0}\right) \quad 0 \rightarrow X \rightarrow S^{\oplus r} \xrightarrow{\varphi} M \rightarrow 0, \quad \varphi\left(\mathbf{e}_{\mathbf{i}}\right)=x_{i} .
$$

We get

$$
\left(\sharp_{1}\right) \quad 0 \rightarrow M^{\vee} \rightarrow K_{S}^{\oplus r} \rightarrow X^{\vee} \rightarrow 0,
$$

$\left(\sharp_{2}\right) \quad 0 \rightarrow \operatorname{Hom}_{s}(M, M) \rightarrow M^{\oplus r} \rightarrow \operatorname{Hom}_{s}(X, M)$.

Proof of assertion (1) of Theorem 1.4

Because $S=\operatorname{Hom}_{S}(M, M)$, we have by $\left(\sharp_{2}\right)$

$$
\left(\sharp_{3}\right) \quad 0 \rightarrow S \xrightarrow{\psi} M^{\oplus r} \rightarrow \operatorname{Hom}_{s}(X, M),
$$

where $\psi(1)=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.
By

$$
\left(\sharp_{0}\right) \quad 0 \rightarrow X \rightarrow S^{\oplus r} \xrightarrow{\varphi} M \rightarrow 0 .
$$

we get

$$
\ell_{S}(X)=r \cdot \ell_{S}(S)-\ell_{S}(M)=r e-e=(r-1) e .
$$

Proof of assertion (1) of Theorem 1.4

By

$$
\left(\sharp_{1}\right) \quad 0 \rightarrow M^{\vee} \rightarrow K_{S}^{\oplus r} \rightarrow X^{\vee} \rightarrow 0,
$$

we have

$$
q:=\mu_{S}\left(X^{\vee}\right) \geq \mu_{S}\left(\mathrm{~K}_{S}^{\oplus r}\right)-\mu_{S}\left(M^{\vee}\right)=r \cdot \mu_{S}\left(\mathrm{~K}_{S}\right)-\mathrm{r}_{S}(M) .
$$

Therefore

$$
(r-1) e=\ell_{s}(X) \geq \ell_{s}((0): \times \mathfrak{n})=q \geq r^{2} s-s=s\left(r^{2}-1\right) .
$$

Thus

$$
e \geq s(r+1)
$$

since $r \geq 2$.

Proof of assertion (1) of Theorem 1.4.

Now suppose $e=s(r+1)$. Then $\mathfrak{n} \cdot \operatorname{Hom}_{s}(X, M)=(0)$. By

$$
\left(\sharp_{3}\right) \quad 0 \rightarrow S \xrightarrow{\psi} M^{\oplus r} \rightarrow \operatorname{Hom}_{S}(X, M),
$$

we have

$$
\mathfrak{n} \cdot M^{\oplus r} \subseteq S \cdot\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

Hence $\mathfrak{n} M \subseteq \mathfrak{a}_{i} M$, where $\mathfrak{a}_{i}=(0):\left(x_{j} \mid 1 \leq j \leq r, j \neq i\right) \subseteq \mathfrak{n}$.
Therefore

$$
\mathfrak{n} M=\mathfrak{a}_{i} M \text { for } 1 \leq \forall i \leq r,
$$

so that $\mathfrak{n}^{2} M=\left(\mathfrak{a}_{1} \mathfrak{a}_{2}\right) M=(0)$. Thus $\mathfrak{n} M \subseteq(0):_{M} \mathfrak{n}$. Consequently

$$
\begin{aligned}
s=r_{s}(M)=\ell_{S}\left((0):_{M} \mathfrak{n}\right) & \geq \ell_{S}(\mathfrak{n} M)=\ell_{S}(M)-\ell_{S}(M / \mathfrak{n} M) \\
& =e-r=s(r+1)-r
\end{aligned}
$$

Hence $0 \geq r s-r=r(s-1)$, which is impossible.

Corollary 3.1

Let R be a Gorenstein local ring with $\operatorname{dim} R=1$ and $\mathrm{e}(R) \leq 6$. Let I be a faithful ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}(I, R)$ is torsionfree, then I is principal.

Let (R, \mathfrak{m}) be a $\mathrm{C}-\mathrm{M}$ local ring with $\operatorname{dim} R=1$ and assume that $\mathfrak{m} \bar{R} \subseteq R$. Let I be a faithful fractional ideal of R. If $I \otimes_{R} I^{\vee}$ is torsionfree, then $I \cong R$ or K_{R}.

Theorem 3.3
Let R be a C-M local ring with $\operatorname{dim} R=1$. Assume $\exists \mathrm{K}_{R}$ and $\mathrm{v}(R)=\mathrm{e}(R)$. Let I be a faithful ideal of R. If $I \otimes_{R} I^{V} \cong \mathrm{~K}_{R}$, then $I \cong R$ or K_{R}.

Let k be a field.

Proposition 3.4

Let $R=k\left[\left[t^{a}, t^{a+1}, \ldots, t^{2 a-1}\right]\right](a \geq 1)$ be the semigroup ring and let $I \neq(0)$ be an ideal of R. If $I \otimes_{R} I^{\vee}$ is torsionfree, then $I \cong R$ or K_{R}.

Corollary 3.5

Let $R=k\left[\left[t^{a}, t^{a+1}, \ldots, t^{2 a-2}\right]\right](a \geq 3)$ be the semigroup ring and let I be an ideal of R. If $I \otimes_{R} \operatorname{Hom}_{R}(I, R)$ is torsionfree, then I is principal.

Proof of Corollary 3.5.

Notice that R is a Gorenstein local ring with $R: \mathfrak{m}=R+k t^{2 a-1}$. Suppose that $I \nsupseteq R$. Then $R \subsetneq B:=I: I$ and therefore $t^{2 a-1} \in B$, whence

$$
R \subseteq S:=k\left[\left[t^{a}, t^{a+1}, \ldots, t^{2 a-1}\right]\right] \subseteq B
$$

Thanks to Lemma 2.2, $I \otimes_{S} \operatorname{Hom}_{S}\left(I, \mathrm{~K}_{S}\right)$ is S-torsionfree, so that $I \cong S$ or $I \cong \mathrm{~K}_{S}$ as an S-module by Proposition 3.4. Hence $I \cong R$ by Proposition 2.3, which is impossible.

Remark 3.6

Corollary 3.5 gives a new class of one-dimensional Gorenstein local domains for which Conjecture 1.2 holds true.
For example, take $a=5$. Then $R=k\left[\left[t^{5}, t^{6}, t^{7}, t^{8}\right]\right]$ is not a complete intersection.

Numerical semigroup rings

Setting 4.1

Let $0<a_{1}<a_{2}<\cdots<a_{\ell} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)=1$. We set $H=\left\langle a_{1}, a_{2}, \ldots, a_{\ell}\right\rangle=\left\{\sum_{i=1}^{\ell} c_{i} a_{i} \mid 0 \leq c_{i} \in \mathbb{Z}\right\}$ and

$$
R=k\left[\left[t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right]\right] \subseteq \quad \subseteq=k[[t]] .
$$

Let $\mathfrak{m}=\left(t^{a_{1}}, t^{a_{2}}, \ldots, t^{a_{\ell}}\right)$ be the maximal ideal of R. We set $\mathfrak{c}=R: V$ and $c=c(H)$, the conductor of H, whence $\mathfrak{c}=t^{c} V$. Let $a=c-1$. Notice that $\mathrm{e}(R)=a_{1}=\mu_{R}(V)$.

Definition 4.2

Let $I \in \mathcal{F}$. Then I is said to be a monomial ideal, if $I=\sum_{n \in \Lambda} R t^{n}$ for some $\Lambda \subseteq \mathbb{Z}$.

Set

$$
\mathcal{M}=\{I \in \mathcal{F} \mid I \text { is a monomial ideal }\}
$$

Passing to the monomial ideal $t^{-q} /$ for some $q \in \mathbb{Z}$, we may assume

$$
R \subseteq I \subseteq V
$$

We assume that $e=a_{1} \geq 2$. Set

$$
\alpha_{i}=\max \{n \in \mathbb{Z} \backslash H \mid n \equiv i \quad \bmod e\} \quad(0 \leq i \leq e-1)
$$

and

$$
\mathcal{S}=\left\{\alpha_{i} \mid 1 \leq i \leq e-1\right\}
$$

Hence $\alpha_{0}=-e, \sharp \mathcal{S}=e-1, a=\max \mathcal{S}$, and $\alpha_{i} \geq i$ for $1 \leq i \leq e-1$.

Theorem 4.3
Let $b=\min \mathcal{S}$ and suppose $t^{b} \in R: \mathfrak{m}$. Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$. If $I \otimes_{R} I^{\vee} \cong K_{R}$, then $I \cong R$ or K_{R}.

The case where $\mathrm{e}(R)=7$

Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$ and set $J=\mathrm{K}_{R}: I$. Suppose that $\mu_{R}(I)=\mu_{R}(J)=2$ and write

$$
I=\left(1, t^{c_{1}}\right), \quad J=\left(1, t^{c_{2}}\right)
$$

where $c_{1}, c_{2}>0$. Assume $I J=\mathrm{K}_{R}$ and $\mu_{R}\left(\mathrm{~K}_{R}\right)=4$.

The case where $\mathrm{e}(R)=7$

Let $I \in \mathcal{M}$ such that $R \subseteq I \subseteq V$ and set $J=\mathrm{K}_{R}: I$. Suppose that $\mu_{R}(I)=\mu_{R}(J)=2$ and write

$$
I=\left(1, t^{c_{1}}\right), \quad J=\left(1, t^{c_{2}}\right)
$$

where $c_{1}, c_{2}>0$. Assume $I J=\mathrm{K}_{R}$ and $\mu_{R}\left(\mathrm{~K}_{R}\right)=4$.

Theorem 5.1
$e=a_{1} \geq 8$.

Theorem 5.2
Let $R=k\left[\left[t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{\ell}}\right]\right]$ be a semigroup ring and suppose that $e=a_{1} \leq 7$. Let $I \in \mathcal{M}$. If $I \otimes_{R} I^{\vee}$ is torsionfree, then $I \cong R$ or K_{R}.

Theorem 5.2
Let $R=k\left[\left[t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{\varepsilon}}\right]\right]$ be a semigroup ring and suppose that $e=a_{1} \leq 7$. Let $I \in \mathcal{M}$. If $I \otimes_{R} I^{\vee}$ is torsionfree, then $I \cong R$ or K_{R}.

Corollary 5.3

Let R be a Gorenstein numerical semigroup ring with $\mathrm{e}(R) \leq 7$ and let $I \in \mathcal{M}$. If $I \otimes_{R} \operatorname{Hom}_{R}(I, R)$ is torsionfree, then I is principal.

Examples

Condition: $I J=\mathrm{K}_{R}$ and $\mu_{R}\left(\mathrm{~K}_{R}\right)=4$
Example 6.1
Let $R=k\left[\left[t^{8}, t^{11}, t^{14}, t^{15}\right]\right]$. Then $\mathrm{K}_{R}=\left(1, t, t^{3}, t^{4}\right)$. We take $I=(1, t)$ and set $J=\mathrm{K}_{R}: I$. Then $J=\left(1, t^{3}\right), I J=\mathrm{K}_{R}$, $\mu_{R}\left(\mathrm{~K}_{R}\right)=4$, but

$$
\mathrm{T}\left(I \otimes_{R} J\right)=R\left(t \otimes t^{16}-1 \otimes t^{17}\right) \cong R / \mathfrak{m}
$$

Remark 6.2

In the ring R of Example $6.1 \nexists$ monomial ideals / such that $I \nexists R, I \not \neq \mathrm{K}_{R}$, and $I \otimes_{R} I^{\vee}$ is torsionfree.

The following ideals also satisfy

$$
I J=\mathrm{K}_{R} \text { and } \mu_{R}\left(\mathrm{~K}_{R}\right)=4
$$

but $I \otimes_{R} I^{\vee}$ is not torsionfree.
(1) $H=\langle 8,9,10,13\rangle, \mathrm{K}_{R}=\left(1, t, t^{3}, t^{4}\right), I=(1, t)$.
(2) $H=\langle 8,11,12,13\rangle, \mathrm{K}_{R}=\left(1, t, t^{3}, t^{4}\right), I=(1, t)$.
(3) $H=\langle 8,11,14,23\rangle, \mathrm{K}_{R}=\left(1, t^{3}, t^{9}, t^{12}\right), I=\left(1, t^{3}\right)$.
(4) $H=\langle 8,13,17,18\rangle, \mathrm{K}_{R}=\left(1, t, t^{5}, t^{6}\right), I=(1, t)$.
(5) $H=\langle 8,13,18,25\rangle, \mathrm{K}_{R}=\left(1, t^{5}, t^{7}, t^{12}\right), I=\left(1, t^{5}\right)$.

If $\mathrm{e}(R) \geq 9$, then Conjecture 1.3 is not true in general.

Example 6.3

Let $R=k\left[\left[t^{9}, t^{10}, t^{11}, t^{12}, t^{15}\right]\right]$. Then $\mathrm{K}_{R}=\left(1, t, t^{3}, t^{4}\right)$. Let $I=(1, t)$ and put $J=\mathrm{K}_{R}: I$. Then

$$
J=\left(1, t^{3}\right), \quad \mu_{R}(I)=\mu_{R}(J)=2, \text { and } \mu_{R}\left(\mathrm{~K}_{R}\right)=4,
$$

but $I \otimes_{R} I^{V}$ is torsionfree.

Thank you very much for your attention!

References

[1] M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631-647.
[2] O. Celikbas and H. Dao, Necessary conditions for the depth formula over C-M local rings, J. Pure Appl. Algebra (to appear).
[3] O. Celikbas and R. Takahashi, Auslander-Reiten conjecture and Auslander-Reiten duality, J. Algebra 382 (2013), 100-114.
[4] C. Huneke and R. Wiegand, Tensor products of modules, rigidity and local cohomology, Math. Scand. 81 (1997), 161-183.
[5] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.

